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Abstract — Problems in natural language processing are becoming increasingly important, including
speech recognition, text-based data mining, and natural language generation. Before many of these tasks
can be approached effectively, it is necessary to understand the syntactic structures of the sentences being
processed. Syntactic parsing is the task of constructing a syntactic parse tree over a sentence which
describes the structure of the sentence. Parse trees are used in larger language processing pipelines as a
more detailed and useful data structure to analyse than raw text alone. In this paper, we explore methods
to design a multi-lingual dependency parser. Using modern deep learning techniques including a BiLSTM
feature embedding layer, our parser architecture tackles common issues with parsing such as long-distance
head attachment, while using ‘architecture engineering’ to adapt to each target language in order to reduce
the feature engineering often required for parsing tasks. We implement a parser based on this architecture
to achieve state-of-the-art results on many languages in the Universal Dependencies treebanks, with a UAS
score of 80.70 on the English Web Treebank, and performing at better than state-of-the-art on Kazakh. By
utilising transfer learning, we exceed the accuracy of state-of-the-art parsers on languages with limited
training resources by a considerable margin. We present promising results for solving core problems in
natural language parsing, while also performing at state-of-the-art accuracy on general parsing tasks.

Keywords — Natural Language Processing, Parsing, Deep Learning, BiLSTM, Dependency Parsing,

I INTRODUCTION

Natural language parsing problems involve determining the syntactic parse tree of a sentence,
which describes its grammatical structure. The two main types of parsing are dependency parsing
and constituency parsing. Dependency parse trees are build over direct relations between words
or other tokens in a sentence, whereas constituency parse trees are based on the parse trees of
formal grammars.

Determining a parse tree of a sentence forms the basis for many other natural language tasks,
particularly semantic analysis tasks (Jurafsky and Martin, 2000), such as sentiment analysis,
information extraction, and question interpretation by proving a data structure which encodes
more information about a piece of text than the raw text alone.

A Dependency Parsing

Dependency parsing is based on the dependency relation formalism. In dependency relations,
tokens are associated with each other directly. Each token excluding the tree’s root token is
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Figure 1: A constituency tree,
representing a parsing of the sentence

‘the man hit the ball’.

Figure 2: A dependency relation, representing
a parsing of the sentence

‘the man hit the ball’.

dependent on an associated ‘head’ token. Dependents are associated with their head through
‘dependency arcs’, which can optionally be labeled to provide additional information about the
relation. Associating tokens via a dependency arc is sometimes called ‘head attachment’.

Dependency grammars have less rigid structural rules when compared to other representa-
tions, such as constituency grammars, as they don’t depend on a set of grammar rules to deter-
mine how elements can be related. While this means that a dependency parsing of a sentence
may not necessarily be grammatically correct, it does open dependency parsing up to represent
languages that are less rigid, such as those with free word order or compound words.

In the dependency relation formalism, a distinction is made between ‘projective’ and ‘non-
projective’ dependency trees. Projective trees are, in rough terms, dependency trees without any
intersecting arcs (see Nivre, 2008, for a more rigorous definition).

Figure 3: An example of a non-projective parse tree.

B Grammar Driven Constituency Parsing

Grammar driven parsing models language as a formal grammar, typically using probabilistic
context free grammars or some extension of them. Modelling language as a formal grammar
gives a hierarchical view of sentence structure where each ‘constituent’, represented by a node in
the parse tree, is either a leaf node associated with some token in the sentence or an internal node
with some constituents of its own as children. This forms the basis for constituency parsing.

That the model is a formal grammar allows common language structures to be represented.
For example, in English, a common pattern is ‘VERB DET NOUN’, such as ‘hit the ball’ in
Figure 1. The most common approach to grammar driven parsing is dynamic programming, in
particular, the Cocke-Younger-Kasami algorithm (Jurafsky and Martin, 2000).

C Data Driven Parsing

As we discuss in Section D, ambiguity is a fundamental problem to natural language parsing;
that there will be multiple valid parse trees for some sentences means that some mechanisms
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must be put in place to decide which of these trees is the ‘most correct’ parse. To address this
problem, statistical parsing was introduced, in which a probability is assigned to each of the valid
parse trees. To generate these probabilities, a corpus — a large collection of text, gold-standard
parse trees, or other linguistic data — is used.

Taking this notion further, data driven parsing moves away from hand-crafted grammars and
attempts to learn the grammar itself. In constituency parsing, chunk based parsing reduces the re-
quirement for predefining grammars by breaking a sentence in to ‘chunks’ which are defined over
very simple grammars, and then using a classifier to group chunks in a less rigid fashion. Depen-
dency parsing, being mostly unrelated to formal grammars, lends itself very well to data driven
parsing. By eliminating the need for hand-crafted grammars, designing a data-driven parser is
much less reliant on specialist linguistic knowledge. The dependence upon data, however, does
introduce with it the task of generating quality treebanks or data sources. For languages with
fewer speakers this becomes an issue, and some languages have little, or no available data.

Along with varying amounts of data, designing a parser that is effective on multiple languages
also presents a challenge; each language has unique grammatical rules and to be effective on
multiple languages a parser should be agnostic to these differences in structure. In contrast to
this, it’s reasonable to expect that the most accurate parsers for a single language would have
features designed around that language.

D Ambiguity

A fundamental problem in parsing is the inherent ambiguity in language; often sentences
have multiple valid interpretations, and additional context is required to differentiate between
these interpretations. Given that a sentence may have multiple valid parse trees, a good parser
should make some attempt at differentiating between the parse trees to select the most likely
valid tree. Much of statistical parsing and data-driven parsing aims to solve this problem.

Figure 4: Two interpretations of ‘I saw an elephant in my pyjamas’ In the lower sentence, the
person seeing the elephant is wearing pyjamas, and in the top interpretation the elephant is

wearing pyjamas.

E Current State of the Art Parsers

The two dominant approaches to dependency parsing are shift-reduce, or transition-based
parsing, and graph-based parsing. In shift-reduce parsing algorithms the input is processed in-
crementally from left-to-right, with the parser making transitions between states according to
the current configuration, generally guided by some classifier. Graph-based dependency parsing
takes a very different approach, and instead operates over the connected digraph with a vertex
representing each token in the sentence.
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As the core component of many parsers is some data-driven model, machine learning models
have seen a lot of use in parsing. With the recent rise of deep learning, there has been a natural
trend towards experimenting with deep learning models for parsing. Deep learning has been par-
ticularly effective across natural language tasks when compared to more classic machine learning
processes, and this is especially true of parsing.

F Project Objectives

The objectives of this project are to assess the viability of deep learning for developing a
multi-lingual, data-driven parser. We introduce a BiLSTM feature embedding layer to improve
long distance parsing that is often an issue with transition-based parsers, and to reduce feature
engineering, which in turn improves language-agnosticism. As well as this, we make use of
transfer learning in an attempt to improve the accuracy of models trained on languages with
limited resources.

Using these approaches, we primarily address two questions; How can we build a parser
that is effective on multiple languages? and How can we train effective models for languages
with limited data?. Our results are very promising, with state-of-the-art performance on most
languages, and with impressive improvements on resource-limited languages, to the extent that
pre-training our parser on similar languages to the target language exceeds current state-of-the-art
results by a large margin.

II RELATED WORK

A Early Research

Much of the syntactic representation of sentences in the styles we use today can be dated
back to Chomsky’s seminal work Syntactic Structure (Chomsky, 1957). Chomsky defined phrase
structure grammars and phrase structure rules by developing the work of Leonard Bloomfield on
Immediate Constituent analysis in Language (Bloomfield, 1933). Phrase structure grammars
now form the foundation for constituency parsing (Jurafsky and Martin, 2000, p. 195).

The development of dependency grammars is typically associated with the work of Lucien
Tesnière in Éléments de syntaxe structurale (Jurafsky and Martin, 2000, p. 268). While the
development of these formalisms of natural language were developed around the same time,
research has tended to focus around phrase structure grammars. This is beginning to change,
however, with the rise in popularity of dependency grammar relations. See for instance the
Depling conference, which started in 2013 and centres around computational linguistics utilising
dependency structures.

B Grammar Driven Parsers

Chomsky’s phrase structure grammar defines language as a formal grammar. As with other
formal grammars, we can attempt to acquire the derivation and trivially construct the parse tree.
Much of the early work on parsing grammars was driven by the development of the first pro-
gramming languages and their compilers, such as Donald Knuth’s left-to-right parser (Knuth,
1965).

While parsers for deterministic grammars form a useful basis for language parsing, work
as early as Chomsky’s modeled language on probabilistic grammars (Chomsky, 1957) due to
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the inherent ambiguity of natural language. Early work on probabilistic context free grammars
(PCFGs), such as Booth’s Probabilistic Representation of Formal Languages (Booth, 1969) gave
rise to the first data-driven parsers. Trainable Grammars for Speech Recognition (Baker, 1979)
builds on the concepts of PCFGs, and discusses ways to train algorithms for grammar inference
on arbitrary CFGs. Methods such as this, which utilise a corpus or treebank to build a statistical
model of a grammar, allow parsers to approximate the probability of a given parse when given
ambiguous sentences. Early examples of this include the PARSIFAL system (Marcus, 1980).

C Transition Based Parsers

Based on shift-reduce algorithms used for parsing deterministic CFGs, transition based algo-
rithms were developed for natural language parsing that instead operate on probabilistic CFGs (Ab-
ney, 1991). More recently, similar methods were developed for incrementally parse dependency
trees (Nivre, 2003, 2008). Nivre’s algorithms allow parsing of a projective sentence in linear
time with respect to the length of the sentence by making a series of transitions between parser
configurations, guided by some ‘oracle’. As well as parsing projective dependency trees, Nivre’s
algorithms have been extended to allow parsing of non-projective trees (Covington, 2001; Nivre,
2008, 2009).

Gold oracles — oracles that when given a perfectly parsed ‘gold’ tree provide a transition
sequence that produces the tree — are used for producing training data. Using the gold oracle,
sequences of parser configurations and resulting transitions can be produced from a treebank to
be used to train a classifier to approximate this oracle. Such an oracle is presented as Algo-
rithm 1 in Goldberg and Nivre (2012) for Nivre’s arc-eager parser. One issue with typical gold
oracles is that they depend on all previous transitions to be correct (Goldberg and Nivre, 2012;
Gómez-Rodrı́guez and Fernández-González, 2015). An extension to this idea, therefore, is the
dynamic oracle. Dynamic oracles use a gold tree to produce the optimal transition in a given
configuration regardless of the previous states of the parser, and allow for ‘error exploration’
— allowing the parser to make a mistake during parsing allows the parser to learn to recover
from mistakes made during parsing. As transition based parsing is very dependent on previous
transitions (Chen and Manning, 2014), this method has been used in many parsers in an attempt
to improve accuracy (Goldberg and Nivre, 2012; Gómez-Rodrı́guez and Fernández-González,
2015; Kiperwasser and Goldberg, 2016) with varying success.

C.1 Graph Based Parsers

Along with incremental dependency parsing, based on work by McDonald et al. (2005), graph
based dependency parsing has gained popularity. McDonald’s method models the parse tree as
a minimum spanning tree over a fully connected graph where each word is a node. This allows
typical spanning tree algorithms to be used, such as Chu-Liu/Edmond’s Algorithm to achieve
O(n2) parsing speed in the length of the sentence (Chu and Liu, 1965; Edmonds, 1967). Along-
side transition based parsing, graph based models have also been used in many recent parsing
implementations, with performance comparable to state of the art transition based parsers (Pei
et al., 2015; Wang and Chang, 2016).

5



D Data Driven Parsing with Machine Learning

Techniques such as graph based parsing and Nivre’s shift-reduce algorithms require some
way to assign a score to each arc or to each transition given the configuration of the parser.
In Nivre’s papers (Nivre and Scholz, 2004; Nivre, 2008), for example, he describes an ‘oracle’
which provides the optimal transition at each configuration in order to perfectly parse a sentence.
In practice, this is typically achieved by using machine learning algorithms to approximate this
oracle. Following his earlier theoretical work, Nivre and Scholz (2004) present a concrete im-
plementation of a dependency parser which utilises instance-based learning through TiMBL, a
framework based on the k-Nearest Neighbour algorithm (Daelemans et al., 2003). In a similar
effort, Yamada and Matsumoto (2003) propose a dependency parser which utilises a Support
Vector Machine to infer transitions for their own shift-reduce algorithm. SVMs have been used
quite successfully in parsing tasks, including both chunk parsing methods for constituency pars-
ing (Zhao and Zhou, 2006), and dependency parsing through shift-reduce algorithms (Nivre,
2008; Yamada and Matsumoto, 2003). A particularly noteworthy parser is MaltParser (Nivre
and Hall, 2005) which has options to utilise either an SVM, or TiMBL as its underlying learning
algorithm and was regarded as state-of-the-art for a time.

E Deep Learning for Parsing

With the recent rise in interest in deep learning, parsing seems to be an excellent area to apply
these techniques; graph-based parsing is fundamentally a regression problem, and transition-
based parsing and chunk-based parsing are classification problems. Deep learning has excelled
at both these tasks, and as such provides a natural fit for this class of problem.

For this paper, particularly relevant is the use of a deep learning classifier as the oracle to a
transition-based parser. One of the first major implementations of a dependency parser backed by
a neural network as its learning algorithm is the Stanford parser (Chen and Manning, 2014). Chen
and Manning were able to significantly reduce the amount of feature engineering required by
utilising few dense features, rather than ‘millions of sparse indicator features’ typically required
by other solutions in order to increase parsing speed by eliminating the need to generate such
features, increase generality, and to reduce the complexity of the parser. Much of the research in
to deep learning for parsing has had similar aims — Kiperwasser and Goldberg (2016) present a
parser utilising a BiLSTM layer, taking only the sequence of words and associated POS tags in
a sentence as input, and allowing the BiLSTM to build the feature embedding using a sequence-
to-sequence architecture before using a multi-layer perceptron to classify transitions.

E.1 LSTMs

Recurrent neural networks operate on sequential data, and as such have been used frequently in
natural language tasks (Goodfellow et al., 2016, p. 163). LSTMs in particular have been used
with some success, including in parsing tasks (Dyer et al., 2015; Ballesteros et al., 2015). These
attempts have generally looked to apply the sequential aspect of the LSTM to the sequence of
transitions used in a transition-based parser, and are based around a novel kind of LSTM, the
Stack-LSTM (Dyer et al., 2015). An alternative approach utilised in very recent years uses
Bidirectional-LSTMs; the sequence of tokens in a sentence is taken as the input to a sequence-
to-sequence BiLSTM model which generates a dense feature embedding to be used as the input
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to another model to parse the sentence. Wang and Chang (2016), for example, use the feature
embedding as a preprocessing step in their graph-based parser, while Kiperwasser and Goldberg
(2016) and Nguyen et al. (2017) utilise a BiLSTM feature embedding as an embedding layer
to transition-based parsers, achieving good results with only a simple multi-layer perceptron to
guide the parser. A parser architecture such as this means that the feature engineering required is
effectively eliminated, albeit with some trade-off in the form of computational complexity, due
to the complexity of a multi-layer BiLSTM.

III SOLUTION

For experimentation and testing, we designed our system in python. We created a parsing
framework based on Nivre’s arc-eager algorithm. To implement our parser model, we used
tensorflow, a leading open-source deep learning framework with python bindings which is seeing
a large amount of use in both industrial and research settings.

A Transition Based Parsing

In this paper, we elected to use a transition-based parser. Nivre’s algorithms are simple to
implement given their straightforward design, and many state-of-the-art parsers make use of
either the arc-standard or arc-eager shift-reduce algorithms. This allows us to compare the per-
formance of our parser to that of other, similar parsers, and gain insight in to how the specific
design decision made in this paper affect the performance of the parser. Whilst simple to im-
plement and understand, Nivre’s algorithms remaining effective as parsing algorithms, allowing
design efforts to focus primarily on the neural network model. One particularly appealing aspect
of Nivre’s shift-reduce parsers is their efficiency — with O(n) run-times in the length of the
sentence, few calls to the model need to be made.

We follow Nivre’s notation (Nivre, 2003, 2008) to outline the arc-standard and arc-eager
parsing algorithms.

State transition Precondition

Left-Arcl (σ|i, j|β,A) → (σ, j|β,A ∪ {(j, l, i)}) ¬[i = 0] ∩ ¬[∃k∃l′s.th.(k, l′, i) ∈ A]
Right-Arcl (σ|i, j|β,A) → (σ|i|j, β, A ∪ {(i, l, j)}) ¬[∃k∃l′s.th.(k, l′, j) ∈ A]
Shift (σ, i|β,A) → (σ|i, β, A)
Reduce (σ|i, β, A) → (σ, β,A) ∃k∃l′s.th.(k, l′, i) ∈ A

Figure 5: The transitions defined by Nivre’s arc-eager parser.

State transition Precondition

Left-Arcl (σ|i, j|β,A) → (σ, j|β,A ∪ {(j, l, i)}) ¬[i = 0] ∩ ¬[∃k∃l′s.th.(k, l′, i) ∈ A]
Right-Arcl (σ|i, j|β,A) → (σ, i|β,A ∪ {(i, l, j)}) ¬[∃k∃l′s.th.(k, l′, j) ∈ A]
Shift (σ, i|β,A) → (σ|i, β, A)

Figure 6: The transitions defined by Nivre’s arc-standard parser.

Nivre’s algorithms maintain a parser state, or ‘configuration’, which is mutated via some
simple state transition functions. Configurations are generally based around at least one ‘stack’
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σ which maintains an ordered list of the tokens currently being operated on, a ‘buffer’ β which
is an ordered list of the tokens yet to be operated on, and a set of labeled dependency arcs A.
After reaching a terminal state (generally when |β| = 0), the parser terminates and returns the
arcs made between words A as a set of 3-tuples of the form (head, label, child) where head and
child are token IDs, and label is a dependency relation associating the two tokens.

By utilising a shift-reduce parser, we also gain the ability to swap between shift-reduce algo-
rithms and can explore the effects these changes have on the parser, provided that a gold oracle
for that parsing algorithm exists in order to generate the dataset. For example, we might sub-
stitute the parsing algorithm for Covington’s algorithm (Covington, 2001), or Nivre’s list-based
parser (Nivre, 2008) for an expected O(n) (worst-cast O(n2))-time non-projective parser.

Graph-based approaches have also proved effective when used alongside machine learning
models, and from Kiperwasser and Goldberg (2016), we see that when using BiLSTM feature
embeddings the performance of graph-based models may infact be greater than transition-based
systems for long-distance parsing, such as for parsing Chinese sentences. Graph-based algo-
rithms such as the MST Parser also parse non-projective trees with no modifications required.
In this paper, we elected not to explore graph-based parsing, as the computational complexity
of graph-based parsers (O(n2) in the length of the sentence) results in poorer scaling than most
transition-based parsers.

For our experiments, we used Nivre’s arc-eager parser. The arc-eager algorithm attempts to
produce shorter parse sequences than other shift-reduce parsers by connecting arcs as early as
possible (Nivre, 2008), and by connecting arcs as early as possible, the parser should have less
of an issue with long-distance parsing. With the arc-standard parser, there may be cases where
the parser is in a configuration with two tokens i, j at the top of the stack and bottom of the
buffer respectively, with (i, l, j) being an arc in the gold tree, however according to the rules of
the shift-reduce parser, (i, l, j) should not be added yet as some descendant of j has not yet been
connected to its head. In such a case, the oracle would require knowledge of which descendants
of j had already been assigned a head to guarantee a correct parse. By allowing the model to add
an arc as soon as it sees two words which should be connected, we eliminate this problem.

For an example of this behaviour, see Figures 7 and 8 for the parsing of ‘We1 swam2 at3 the4
beach5’.

Configuration Action

1 ([1], [2, 3, 4, 5], A = {}) Left-Arcnsubj

2 ([], [2, 3, 4, 5], A) Shift
3 ([2], [3, 4, 5], A) Right-Arcprep

4 ([2, 3], [4, 5], A) Shift
5 ([2, 3, 4], [5], A) Left-Arcdet

6 ([2, 3], [5], A) Right-Arcpobj

7 ([2, 3, 5], [], A)

Figure 7: Parsing ‘We1 swam2 at3 the4 beach5’
using Nivre’s arc-eager parser.

Configuration Action

1 ([1], [2, 3, 4, 5], A = {}) Left-Arcnsubj

2 ([], [2, 3, 4, 5], A) Shift
3 ([2], [3, 4, 5], A) Shift
4 ([2, 3], [4, 5], A) Shift
5 ([2, 3, 4], [5], A) Left-Arcdet

6 ([2, 3], [5], A) Right-Arcpobj

7 ([2], [3], A) Right-Arcprep

8 ([], [2], A) Shift
9 ([2], [], A)

Figure 8: Parsing ‘We swam at the beach’
using Nivre’s arc-standard parser.

Notice that the parsing diverges at step 3, as we can’t yet form a right arc between swam2
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and at3 using the arc-standard parser; the rule Right-Arc (σ|i, j|β,A) → (σ, i|β,A) at config-
uration ([2], [3, 4, 5], A) would remove the token at3 from the parser configuration and prevent
its descendants being assigned their proper head. The Right-Arc operation joining ‘swam2’ and
‘at3’ must therefore be delayed until step 7 in the arc-standard parsing.

B The Core Classifier

Our parsing model’s architecture is similar to that of Nguyen et al. (2017) and Kiperwasser
and Goldberg (2016) — utilising a BiLSTM to first build a feature embedding layer, and take
the output of the BiLSTM as the input to a more typical multi-layer perceptron, as in Chen
and Manning (2014). The BiLSTM provides many beneficial features; primarily, it encodes
positional information, and it also significantly reduces the need for feature engineering.

Figure 9: A simplified view of the parser architecture part way through parsing the sentence
‘the man hit the ball’: The BiLSTM layer builds a feature embedding over the word and POS
embeddings Xt of the input tokens t, and given a parser state (σ|man, hit|β,A) the multi-layer
perceptrons for classifying the arc and label are given the BiLSTM embedded vectors for ‘man’
and ‘hit’ as input.

The flow of a sentence through the model during parsing is as follows; each sentence token
t has associated with it a word form, a lemma, a universal part-of-speech tag, and a language-
specific part of speech tag. Some combination of these decided by the model configuration
are passed to an embedding layer e to produce eform(t), elemma(t), eutag(t), and extag(t) re-
spectively. The resulting vectors are then concatenated to form a token embedding xt = e(t)
(with e.g. e(t) = eform(t) ◦ elemma(t) ◦ eutag(t)). The word and lemma embeddings also in-
clude special tokens for the root node of the sentence and for words outside of the vocab-
ulary of the word and lemma embeddings. The sequence of token embeddings xt1 , xt2 , . . .
is then passed through the BiLSTM feature embedding layer to produce a second sequence
vt1 , vt2 , . . . = BiLSTM(xt1 , xt2 , . . .).

Once the parser has generated the feature embedding for the sequence of tokens, it begins
stepping through the shift-reduce algorithm it has been configured to use, utilising the model as
an oracle. For a parser configuration C = (σ|s1 . . . sn, b1 . . . bm|β,A), a lookup is done over
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the BiLSTM embedding of the top n tokens on the stack s1 . . . sn and bottom m tokens of the
buffer b1 . . . bm to obtain v = vs1 , . . . , vsn , vb1 , . . . , vbn , where m and n are hyperparameters of
the model. In cases where some si or bj do not exists, as there are fewer than n items on the stack
or fewer than m items on the buffer, a special token vnone is used to represent vsi or vbj . With
the vs calculated, there are then two multi-layer perceptrons MLParc and MLPlabel. For the
arc-eager parser, with base transitions T = {Left-Arc,Right-Arc, Shift, Reduce}, MLParc

produces a score for each T ∈ T in the form of a tuple

MLParc(v) = (ScoreLeft-Arc(v), ScoreRight-Arc(v), ScoreShift(v), ScoreReduce(v))

Given a configuration C, not all transitions are necessarily allowed due to the prerequisites of
each transition, and so we also define Ta to denote the set of valid transitions. We have then that
the transition made by the parser in configuration C is

arg max
T∈Ta

ScoreT (v)

The primary difference between our parser and more traditional transition-based parsing
models is the BiLSTM feature embedding. Our motivations for using the embedding layer are
two-fold; positional encoding, and the near-elimination of feature engineering. The latter of
these has been a core motivation for using deep learning for parsing; Chen and Manning (2014)
use only 18 input features in their model, and similarly, Pei et al. (2015) use 21 input features in
their graph-based model. While these approaches are certainly an improvement on the indicator
features used by early parsing models, using a BiLSTM feature embedding layer reduces this fea-
ture engineering further through ‘architecture engineering’ (Kiperwasser and Goldberg, 2016).
That the BiLSTM passes information in both directions between cells allows the tokens’ feature
embedding vectors to encode information about the relationship between tokens, allowing some
of the features that might be encoded by some feature engineering to be encoded directly in the
model. As a primary goal of this project was to design a multi-lingual parser, the reduction of fea-
ture engineering was particularly important when designing our model’s architecture. Different
languages have different structural rules, and so to build an optimal parser without some feature
embedding layer would require feature engineering for each individual language. By having the
model learn this feature engineering itself, we eliminate the need to construct optimal features
for each language and instead approximate more complex features as part of our model. This is
not to say, however, that the requirement for feature engineering was totally eliminated. In our
model, we make use of a context window to look ahead in to the stack and buffer in each parser
configuration. This lookahead allows the model to gain additional contextual information re-
garding the state of the parsing algorithm, much like the context windows used in more classical
approaches (Chen and Manning, 2014; Pei et al., 2015).

One of the major problems in parsing is the parsing of long sequences of tokens, particularly
for greedy parsers such as transition based parsers — a mistake early on propagates throughout
the entire parse, and has a knock-on effect (Chen and Manning, 2014). The use of context win-
dows by early parsers gives the parsing models the ability to look somewhat in to the future of
the parsing sequence helps to eliminate this, however the effectiveness of a BiLSTM embedding
layer for encoding long-distance relations allowed Wang and Chang (2016) to completely forgo
the use of context windows in their graph-based model to completely eliminate feature engineer-
ing, although in our testing we found that the quality of our model still improved when using
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a small context window. Partner to this issue is long-distance arc attachments; the parser must
somehow recognise that a child cwith a distant head h are associated, and ‘hold off’ on assigning
a head to c when it is presented with other candidate heads. Context windows help alleviate this
issue, however as we show in Section IV, the BiLSTM layer in our solution helps to encapsulate
distant relations, improving the long-distance attachment abilities of our parser.

C Arc Labeling

The arc-eager and arc-standard algorithms utilise operationsLeft-Arcl andRight-Arcl, with
l denoting the label assigned to the arc. The set of transitions for the arc-eager algorithm is then
T = ({Left-Arc,Right-Arc}×L)∪{Shift, Reduce}, whereL is the set of arc labels. With 37
dependency relations in the Universal Dependency Relations, there are 76 possible transitions.
Given that the distribution of these labels will be quite imbalanced — even before separating by
left and right arcs there are less than 1,000 instances of the 20 least-common labels in the English
Universal Dependencies Treebank out of over 200,000 arcs — and given the large number of
labels, the training data gets quite sparse for some transition classes, even on larger treebanks.

Our solution to this problem is to have the main classifier decide only between the transitions
T = {Left-Arc,Right-Arc, Shift, Reduce} and to offload the labeling of arcs to a second
multi-layer perceptron, which takes the feature embeddings from the BiLSTM layer along with
the POS tag embedding to produce a label. This significantly reduces the sparsity of data for
the main classifier and should create much more balanced data. One caveat of this approach is
that using two MLPs somewhat increases the computational complexity of the model and likely
increases parsing and training time. This impact may be insignificant, however, as when doing
joint label and arc classification the complexity of the MLP is likely higher than the complexity
of either of the individual perceptrons.

D Designing a Multi-lingual Parser

A core aim of this paper was to develop a language-agnostic, multi-lingual parser. This comes
with a few challenges; firstly, while languages follow very roughly the same structure, there are
significant differences in grammatical structure between languages. These differences mean that
while a given parser architecture may be very effective for one language, it may perform poorly
on others. As has been discussed, we attempt to alleviate this problem by using a BiLSTM
feature embedding layer to implement ‘architecture engineering’ as opposed to more classical
feature engineering. The architecture of our model allows it to learn language-specific features
and eliminate the need for hand-tuning the optimal features for each language. From our results,
it is clear that our parser achieves this goal, performing with near-state-of-the-art accuracy on a
wide variety of languages.

Another core problem to data-driven parsing is the availability of data; whilst some languages
such as English and Chinese have many accurate datasets available, most other languages, partic-
ularly those with fewer fluent speakers, have little-to-no data with which to train a model. Quite
relevant to this paper is the upcoming CoNLL 2018 Shared Task, whose focus is to continue
the work of their 2017 Shared Task by constructing a parser to parse raw text over many topo-
logically different languages, particularly those with limited resources (CoNLL, 2018). As we
shall demonstrate through our results, our parser tackles this problem effectively both through
the architecture of our model.
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D.1 Transfer Learning

In transfer learning, the knowledge gained by a model in one domain is used to enhance the ability
of a model on a different, but related task (Goodfellow et al., 2016, pp. 526-527). In this paper, we
explore the possibility of training a baseline model on a language with a large amount of available
data, such as English, and to then re-train the model on a related language with a considerably
smaller dataset, such as Afrikaans. Our hypothesis is that the model might transfer some of the
knowledge gained by training on a very large dataset that is not captured by smaller datasets.
Having this additional knowledge could improve the accuracy of the parser on the resource-
limited languages when compared to training on a resource-limited language alone. Our results
help to confirm this hypothesis; our parser performs with significantly higher accuracy than other
state-of-the-art parsers on a variety of languages when using transfer learning.

E Model Optimisation and Training

We build our training dataset by using a gold oracle to generate a sequence of parser configu-
rations and their corresponding optimal transitions for each sentence in our training dataset. We
generate batches of sentences to be fed to the model, and for each training instance the tokens in
the sentence are fed to the BiLSTM layer to generate a dynamic embedding for each token. The
arc MLP uses these embeddings to evaluate probabilities for what it thinks is the optimal transi-
tion for each configuration, and the softmax cross-entropy loss is calculated over the transition
probabilities versus the optimal transition. This loss, plus an L2-regularisation loss is minimized
using the Adam optimizer (Kingma and Ba, 2015) over the set of model variables.

Layer Parameter Value

MLPs
Nodes in MLParc (Layer 1, Layer 2) 300, 300
Nodes in MLPlabel (Layer 1, 2, 3) 300, 400, 500

MLP Input
Stack window size 3
Buffer window size 2

BiLSTM Nodes in each LSTM Cell (BiLSTM Layer 1, 2) 200, 200

BiLSTM Input
Word Embedding Size 300
Tag Embedding Size 50

Misc
L2 normalisation coefficient 5e−7
MLParc dropout rate 0.3

Table 1: The hyperparameters for the final model.

Following Kiperwasser and Goldberg (2016), we train the BiLSTM feature embedding jointly
with the parser in order to ensure the embedding is appropriate for the parsing problem. This is
in contrast to more traditional methods, where an embedding layer is often built before-hand on
a large text corpus using a more general model, such as a word2vec embedding. Our parser does,
however, have the ability to use pre-trained word embeddings to be used in the embedding layer
that is used as input to the BiLSTM, however we found the impact of this negligible.

There were a number of hyperparameters to tune for this model; primarily the layer sizes
and context window sizes. The final hyperparameter values are outilined in Table 1 Due to the
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complexity of the model and size of the English Universal Dependencies treebank, which was
used for most of the hyperparameter tuning, hyperparameters were tuned using a grid search on
a subset of the treebank — 1200 sentences, with additional tuning on 3000 sentences to verify
that the parameters scale well — and then the model was trained on the entire dateset. Other
model parameters that were experimented with included the L2 regularisation coefficient, and the
droupout rate. We found that for the labeling MLP, adding dropout slowed training and did not
prevent overfitting any more than using L2 regularisation alone and so dropout was used only for
the label MLP. We theorise that this is due to the relative sparsity of the data — having two similar
arc MLP input sequences is unlikely; the BiLSTM layer means that even two configurations with
the same words in the context window will not have identical inputs to the multi-layer perceptron,
as the token embeddings will be affected by the tokens outside the context window. That it helped
reduce overfitting for labelling, however, suggests that the labeling task was less sparse, and so
less dependent sentence-specific context.

An approach that has been used in the past for training parsing models is error exploration,
in which the parser is allowed to make incorrect decisions and attempts to build the most optimal
tree given that the mistake has been made (Goldberg and Nivre, 2012). This artificially increases
the data size and theoretically allows the parser to ‘recover’ from mistakes made earlier in the
transition sequence. Error exploration requires a dynamic gold oracle, which considerably in-
creases the complexity of the training procedure for a model, and from the ablation experiments
of Kiperwasser and Goldberg (2016) there is very little to be gained from training with error ex-
ploration when using architectures like ours; Nguyen et al. (2017) don’t utilise error exploration
in their joint tagger and parser, and still achieve impressive results. We therefore did not make
use of error exploration when training our model. One way we theorise that error exploration
may be of use is when training on languages with smaller datasets; the artificial inflation of the
dataset through error exploration could help alleviate the issues caused by having a small dataset.

F Data

For our experiments, we used the Universal Dependencies treebanks. Universal Dependen-
cies provide treebanks for a number of languages in a common format, which was ideal for our
goals. The format used by the Universal Dependecies treebanks is CoNLL-U (Universal Depen-
dencies, 2014), which provides a number of fields for each token in a sentence. These fields
are: a numerical token id; the token itself; the lemma or stem of the token; universal part-of-
speech tags; language specific part-of-speech tags; additional features of the token; the head
of the token; the dependency relation; additional dependency graph detail; and a miscellaneous
information field. Table 2 outlines an example of this format. Most important to our work is
the token, lemma, part of speech tags, and of course the token’s head and dependency relations.
Typically, a language processing pipeline would be provided with raw text requiring tokenisa-
tion, stemming, and tagging before parsing. By using the Universal Dependencies treebanks we
are provided with part-of-speech tags, and the lemma field provides the equivalent of stemmed
words. This allows us to abstract away the details of acquiring these features and also eliminates
the error introduced by imperfect taggers and stemmers, allowing a more direct comparison of
our parser with other state-of-the-art implementations.

The Universal Dependencies treebanks are becoming increasingly commonly used for eval-
uating parsers; there are regular shared tasks hosted by CoNLL, the most recent of which have
used the Universal Dependencies relations, and the Stanford Natural Language Processing Group
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ID Token Lemma UPOS XPOS Features Head Relation type DEPS Misc

1 The the DET DT - 2 det - -
2 man man NOUN NN - 3 nsubj - -
3 hit hit VERB VBD - 0 root - -
4 the the DET DT - 5 det - -
5 ball ball NOUN NN - 3 dobj - -
6 . . PUNCT . - 3 punct - -

Table 2: A CoNLL-U Formatted parse of ‘The man hit the ball.’

has migrated also away from their own Stanford Dependencies treebanks in favour of Universal
Dependencies (de Marneffe and Manning, 2016). Some papers, however, still make use of the
Stanford Dependencies treebanks (Chen and Manning, 2014; Kiperwasser and Goldberg, 2016).
A large issue for us if we had opted to use the Stanford Dependencies is the lack of available lan-
guages with a consistent format — a problem that is readily solved by Universal Dependencies.

IV RESULTS

To evaluate our parser, we use 3 common metrics for parser evaluation; labeled attachment
score (LAS), unlabeled attachment score (UAS), and label accuracy. UAS assesses the accuracy
of the structure of a dependency tree compared to its gold parsing, and LAS also takes in to
account the labeling of the dependency arcs (Kubler et al., 2009). Label accuracy assesses the
accuracy of the labels assigned to correct arcs.

To evaluate the accuracy of our parser we make use of the CoNLL-X evaluation script1,
with some minor modifications to provide more detailed information about long-distance head
attachment. It provides a number of useful metrics, such as head attachment accuracy according
to dependency distance, and analysis of the most common errors made by the parser.

When evaluating the parser, as is typical with natural language tasks we use training, devel-
opment and testing datasets. The training set is used for training the model, and during training
its performance is evaluated on the development set to allow for tuning the hyperparameters of
our model. Once the optimal hyperparameters for the development set have been found, the
overall performance of the model is evaluated on the testing dataset. This guarantees that the
model generalises well to unseen data. The Universal Dependencies datasets provide each of
these datasets for each language to ensure consistency when evaluating multiple parsers.

For a point of comparison, we look at the performance of various parsers submitted to the
CoNLL 2017 Shared Task (CoNLL, 2017). Because we are using the same datasets that were
used in the shared task, we can directly compare the performance of our parser to the state-of-
the-art parsers in the shared task. Details of the datasets we used are outlined in Table 3.

To evaluate our parser’s versatility and language independency, we experimented on lan-
guages with different grammatical complexities and dataset sizes. Choosing languages with di-
verse linguistic characteristics ensured that we were not optimising our parser too heavily for one
language family, as a large motivation for this paper was to build a parser that performed well on
any language. We segment our languages in to ‘large’ and ‘small’ treebanks. Our large treebank
languages include English, Persian, Turkish and Chinese. Along side these we tested Afrikaans

1(Available at https://github.com/elikip/bist-parser/blob/master/barchybrid/src/utils/eval.pl)
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Treebank Language Training Sentences Testing Sentences

en English 12543 2077
af Afrikaans 1315 425
kmr Kurmanji 20 734
fa Persian 4798 600
tr Turkish 3685 975
kk Kazakh 31 1047
zh Chinese 3997 500

Table 3: An overview of the datasets used for experimentation and testing.

to gain an idea of the applicability of transfer learning to medium-resource languages and chose
Kazakh and Kurmanji to experiment with transfer learning on languages with very limited re-
sources (31 and 20 sentences, respectively). Each small language was fairly close linguistically
to a larger language; Afrikaans to English, Kurmanji to Persian, and Kazakh to Turkish. We
attempt to exploit these linguistic similarities when using transfer learning.

This Work CoNLL 2017
Treebank UAS LAS LA UAS LAS

en 80.70 65.95 71.16 84.74 82.23
af 66.95 51.44 61.21 - -
kmr 53.68 35.91 47.42 54.73 47.53
fa 82.49 62.13 67.97 89.64 86.31
tr 54.72 38.05 48.83 69.62 62.79
kk 52.96 29.84 34.99 45.72 29.22
zh 70.10 46.44 55.27 72.39 68.56

Table 4: Unlabeled Attachment Scores, Labeled Attachment Scores, and Label Accuracy versus
the best scoring parser in the CoNLL 2017 Shared Task for each language.

As shown in Table 4, our parser shows very promising unlabeled attachment scores across
most languages, coming close to the most accurate parser submitted to the leading shared task
on parsing in English, Kurmanji, and exceeding the best parser in Kazakh, demonstrating our
parser’s versatility in parsing a variety of language families with good accuracy. While our parser
shows good head attachment accuracy, labeling accuracy was lower than the top state-of-the-art
parsers, for all languages other than Kazakh, however on some treebanks, such as Kurmanji, we
still would have placed in the top ten parsers for LAS, out of 33 submitted to the shared task.

Interestingly, our parser appears to perform very well on very low-resource languages, per-
forming better than state-of-the-art on Kazakh and coming very close on Kurmanji, the two
smallest treebanks we used to evaluate our parser.

A Model Optimisation and Hyperparameter Tuning

During training and hyperparameter tuning, we made use of tensorboard, tensorflow’s built
in logging and visualisation tool. This allowed us to see how changes in the architecture of the
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model affected different characteristics of the overall system, such as training and parsing speed,
parsing accuracy, and compare these characteristics directly.

Through hyperparameter tuning with a relatively fine-grained grid search, we found optimal
parameters detailed in Table 1. Particularly interesting were the stack and buffer window sizes
and experiments to optimise which features to use. The most optimal window sizes were 3 and 2
for the stack and buffer respectively. We theorise that when increasing the size of the windows,
the data sparsity increased, leading to a reduced ability for the parser to generalise for larger win-
dow sizes. In a similar vein, we found that using language-specific part-of-speech tags yielded
poorer accuracies on both the training and development datasets than the universal tags, and we
attribute this to the sparsity of the data when using language-specific tags. That the difference
between training and development accuracies is larger when using language-specific tags than
universal tags (4.05% and 2.65%, respectively) indicates that when using language-specific tags
more overfitting is occurring, reducing model’s ability to generalise to unseen sentences.

B Long Distance Dependencies

This Work Stanford Parser
Distance Precision Recall F1 Score Precision Recall F1 Score

To root 91.12 88.09 89.58 84.68 84.52 84.60
1 89.99 94.52 92.20 91.43 92.19 91.81
2 81.80 74.30 77.87 85.87 88.34 87.09
3 78.36 73.45 75.83 80.69 81.15 80.92
4 71.34 71.44 71.39 73.98 71.97 72.96
5 68.08 61.85 64.82 64.26 61.90 63.06
6 56.36 56.78 56.59 61.68 57.02 60.42
7+ 61.70 66.71 64.12 64.45 58.15 61.14

Table 5: Precision, Recall, and F1 Score of head attachments by attachment distance on the
English Web Treebank Universal Dependencies dataset.

Comparing our parser on parsing distance with the Stanford parser, we see from Table 5
that despite being slightly less accurate overall, our parser excels at long-distance parsing; for
attaching arcs a distance greater than 6 tokens away, and for tokens a distance of 5 away, our
parser out-performs the Stanford parser with regards to head attachment F1 score. This reinforces
our hypothesis that the BiLSTM embedding layer we use allows for more accurate long-distance
head attachment by encoding information about these long-distance dependencies in the token
embeddings generated by the BiLSTM.

C Transfer Learning

As shown in Table 6, making use of transfer learning proved very effective across a number
of languages. Comparing our results to the CoNLL 2017 Shared Task, we find that our parser
gains improvements of 15.24 UAS and 9.06 LAS on Kurmanji, and 15.24 UAS and 7.56 LAS on
Kazakh over the current state-of-the-art. We also present one of the first results for Afrikaans,
demonstrating promising parsing accuracy.
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Treebank Parser UAS LAS

af
This work 66.59 51.44
This work (p.t. en) 80.33 56.27
Best CoNLL 2017 - -

kmr
This work 53.68 35.91
This work (p.t. fa) 60.24 56.59
Best CoNLL 2017 54.73 47.53

kk

This work 52.96 29.84
This work (p.t. tr) 52.13 32.26
This work (p.t. en) 60.96 36.78
Best CoNLL 2017 45.72 29.22

Table 6: Unlabeled Attachment Scores and Labeled Attachment Scores on languages with and
without pre-training (p.t.) on larger datasets versus the highest accuracy parser in the CoNLL

2017 Shared Task for each langauge.

With lower than expected results when pre-training the Kazakh model on Turkish, we antici-
pated that this was a result of our parser’s poor accuracy on Turkish. By pre-training the Kazakh
model on the English dataset, we achieved much higher UAS and LAS scores, indicating that
an accurate pretrained model on a loosely related language can be a better choice for transfer
learning than an inaccurate but related language’s model.

V EVALUATION

In this paper we have presented an architecture for a natural language parser which performs
with state-of-the-art accuracy on a number of languages, and have investigated the qualities of
our parser that allow it to do so.

By comparing our solution to the results of the CoNLL 2017 Shared Task, we have a direct
comparison with the current state-of-the-art parsers across a variety of languages. The Universal
Dependencies datasets used both by us and the CoNLL Shared Tasks also provide the ability
to compare our parsers performance between languages on standardised datasets, and to easily
investigate the effectiveness of transfer learning.

In our experiments, using python allowed us to iterate quickly between parser architectures,
both in the implementation of the parser algorithm and in the model itself. The tensorflow API
followed closely with this quality of python, allowing for quick modifications to the neural net-
work model with a relatively straightforward interface. The codebase could have been simplified
somewhat by making use of a higher-level deep learning API such as Keras, which runs on top
of tensorflow or other deep learning frameworks, however we found that the low-level flexibility
granted by tensorflow was useful for implementing what is a slightly unorthodox neural network
architecture; that the labeler and arc multilayer perceptrons take subsets of the output of the BiL-
STM layer could have been difficult or impossible to implement without using the lower-level
aspects of the tensorflow API.

Unfortunately, our parser shows poor performance with regards to labeling. Despite Kiper-
wasser and Goldberg (2016) finding success with a similar architecture on the Penn Treebank
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and Chinese Treebank datasets, our split arc and labeler multi-layer perceptron architecture fell
short of expectations and resulted in lower LAS scores than we would have liked.

While we have presented a highly effective parser architecture for many languages, the model
optimisation procedure was somewhat limited in that it focused primarily on English datasets.
Had we experimented with hyperparameter tuning on a wider range of datasets, we may have
achieved a higher accuracy on some languages with different characteristics to English, and may
have achieved state-of-the-art results or better. Despite this, our parser performed just below
the best performing state-of-the-art parsers on many languages, and in the case of Kazakh ex-
ceeded the current state-of-the-art, demonstrating our architecture’s multi-lingual capabilities.
Particularly interesting is our parser’s performance on resource-limited languages, consistently
performing at, or better than the level of the best known parsers. We further improved on our
advances in this critical problem for natural language processing tasks by demonstrating highly
effective transfer learning techniques to achieve results far above the state-of-the-art in Kurmanji
and Kazakh, and showing high accuracy on Afrikaans, which was not evaluated in the CoNLL
shared task.

VI CONCLUSIONS

That our parsing architecture performs comparably to state-of-the-art parsers across a range
of language families demonstrates that BiLSTM feature embeddings allow for effective multi-
lingual parsing, setting our parser out from other state-of-the-art parsers which are often more
specialised for certain language families. Effectively eliminating feature engineering, the BiL-
STM allows the parser to adapt to the target language through architecture engineering. The BiL-
STM layer also helps to solve issues such as long-distance head attachments which are common
problems when parsing languages such as Chinese. Our architecture also shows very promising
results when parsing languages with very limited resources.

As a particularly important challenge in data-driven parsing, we have also shown that trans-
fer learning can be used to further improve parsing performance on resource-limited languages.
By pre-training our model on related languages, we instill more general linguistic features of
the language family not captured by a smaller dataset, transfer learning proves to be a very ef-
fective method for enhancing parsing performance, achieving better than state-of-the-art parsing
accuracy on these resource-limited languages.

A Future work

One approach considered for this paper was to attempt to exploit the sequential nature of
shift-reduce algorithms, and to utilise an LSTM to classify which transition to make. Our theory
is that it may be possible that common patterns in sentence structure, such as ‘DET NOUN VERB
DET NOUN’, as in ‘The man hit the ball’, may be able to be captured by the LSTM. An LSTM,
however, is significantly more computationally complex than an MLP, and a large motivation for
us using a BiLSTM was to encode this type of structural information in to the token embeddings;
using an LSTM for parsing may be better utilised alongside other parsing methodologies.

With the limitations of our arc labeling multi-layer perceptron holding back our parser some-
what, and while Kiperwasser and Goldberg (2016) found success with a separate MLP for arc
labeling on the Penn Treebank and Chinese Treebank datasets, research in to how to better la-
bel arcs given a feature embedding layer could prove valuable. This split MLParc and MLPlabel
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architecture may be useful in other parsing architectures, and may prove more effective if the
embedding is trained jointly on both the arc and labeler MLPs.
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